Wavelet-based statistical signal processing using hidden Markov models

نویسندگان

  • Matthew S. Crouse
  • Robert D. Nowak
  • Richard G. Baraniuk
چکیده

Wavelet-based statistical signal processing techniques such as denoising and detection typically model the wavelet coefficients as independent or jointly Gaussian. These models are unrealistic for many real-world signals. In this paper, we develop a new framework for statistical signal processing based on wavelet-domain hidden Markov models (HMM’s) that concisely models the statistical dependencies and non-Gaussian statistics encountered in real-world signals. Wavelet-domain HMM’s are designed with the intrinsic properties of the wavelet transform in mind and provide powerful, yet tractable, probabilistic signal models. Efficient expectation maximization algorithms are developed for fitting the HMM’s to observational signal data. The new framework is suitable for a wide range of applications, including signal estimation, detection, classification, prediction, and even synthesis. To demonstrate the utility of wavelet-domain HMM’s, we develop novel algorithms for signal denoising, classification, and detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denoising in Wavelet Domain Using Probabilistic Graphical Models

Denoising of real world images that are degraded by Gaussian noise is a long established problem in statistical signal processing. The existing models in time-frequency domain typically model the wavelet coefficients as either independent or jointly Gaussian. However, in the compression arena, techniques like denoising and detection, states the need for models to be nonGaussian in nature. Proba...

متن کامل

Wavelet-based Image Modelling for Compression Using Hidden Markov Model

Statistical signal modeling using hidden Markov model is one of the techniques used for image compression. Wavelet based statistical signal models are impractical for most of the real time processing because they usually represent the wavelet coefficients as jointly Gaussian or independent to each other. In this paper, we build up an algorithm that succinctly characterizes the interdependencies...

متن کامل

Signal estimation using wavelet-Markov models

Current wavelet-based statistical signal and image processing techniques such as shrinkage and filtering treat the wavelet coefficients as though they were statistically independent. This assumption is unrealistic; considering the statistical dependencies between wavelet coefficients can yield substantial performance improvements. In this paper, we develop a new framework for wavelet-based sign...

متن کامل

Wavelet - Based Statistical Signal Processing

Wavelet-based statistical signal processing techniques such as denoising and detection typically model the wavelet coeecients as independent or jointly Gaussian. These models are unrealistic for many real-world signals. In this paper, we develop a new framework based on wavelet-domain hidden Markov models (HMMs). The framework enables us to concisely model the statistical dependencies and nonGa...

متن کامل

Contextual Hidden Markov Models forWavelet - domain Signal

Wavelet-domain Hidden Markov Models (HMMs) provide a powerful new approach for statistical model-ing and processing of wavelet coeecients. In addition to characterizing the statistics of individual wavelet coeecients, HMMs capture some of the key interactions between wavelet coeecients. However, as HMMs model an increasing number of wavelet coeecient interactions , HMM-based signal processing b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 46  شماره 

صفحات  -

تاریخ انتشار 1998